Lesson 18. Optimization with Equality Constraints

1 The effect of a constraint

- Let's model a consumer whose utility depends on his or her consumption of two products
- Define the following variables:

$$
x_{1}=\text { units of product } 1 \text { consumed } \quad x_{2}=\text { units of product } 2 \text { consumed }
$$

- The consumer's utility function is

$$
f\left(x_{1}, x_{2}\right)=x_{1} x_{2}+2 x_{1}+2 x_{2}
$$

- Without any additional information, the consumer can maximize his or her utility by
\square
- To make this model more realistic, we should take into account the consumer's budget
- Suppose the unit prices of products 1 and 2 are $\$ 1$ and $\$ 3$ respectively
- In addition, suppose the consumer intends to spend $\$ 10$ on the two products
- The consumer's budget constraint can be expressed as
- Putting this all together, we obtain the following optimization model:

$$
\begin{array}{ll}
\operatorname{maximize} & x_{1} x_{2}+2 x_{1}+2 x_{2} \\
\text { subject to } & x_{1}+3 x_{2}=10
\end{array}
$$

- We have seen models like this before, with an objective function to be maximized/minimized, and equality constraints defining relationships between the variables - e.g. profit maximization
- Sometimes we can solve these models by first substituting the equality constraint into the objective function, and then finding the minimum/maximum of the resulting objective function
- This isn't always possible, especially when the equality constraint is complex
- Instead, we can use the method of Lagrange multipliers

2 The Lagrange multiplier method - 1 equality constraint

$$
\begin{aligned}
\text { minimize } / \text { maximize } & f\left(x_{1}, \ldots, x_{n}\right) \\
\text { subject to } & g\left(x_{1}, \ldots, x_{n}\right)=c
\end{aligned}
$$

- The Lagrangian function L is

$$
L\left(\lambda, x_{1}, \ldots, x_{n}\right)=f\left(x_{1}, \ldots, x_{n}\right)-\lambda\left[g\left(x_{1}, \ldots, x_{n}\right)-c\right]
$$

- The gradient of L is
- The Hessian of L (also known as the bordered Hessian) is:

Finding constrained local optima:

- Step 0. Form the Lagrangian function L and find its gradient and Hessian
- Step 1. Find the constrained critical points $\left(\lambda, x_{1}, \ldots, x_{n}\right)$ that solve the following system of equations:

$$
\nabla L\left(\lambda, x_{1}, \ldots, x_{n}\right)=0 \text { or equivalently } \begin{aligned}
& g\left(x_{1}, \ldots, x_{n}\right)=c \\
& \frac{\partial f}{\partial x_{1}}\left(x_{1}, \ldots, x_{n}\right)=\lambda \frac{\partial g}{\partial x_{1}}\left(x_{1}, \ldots, x_{n}\right) \\
& \vdots \\
& \frac{\partial f}{\partial x_{n}}\left(x_{1}, \ldots, x_{n}\right)=\lambda \frac{\partial g}{\partial x_{n}}\left(x_{1}, \ldots, x_{n}\right)
\end{aligned}
$$

- Step 2. Classify each constrained critical point as a local minimum, local maximum, or saddle point by applying the second derivative test for constrained extrema:
- Suppose $\left(\lambda^{*}, x_{1}^{*}, \ldots, x_{n}^{*}\right)$ is a constrained critical point found in Step 1
- Compute the principal minors $d_{i}=\left|H_{L}\left(\lambda^{*}, x_{1}^{*}, \ldots, x_{n}^{*}\right)\right|$ for $\underline{i=3, \ldots, n+1}$
- If $d_{n+1} \neq 0$:

$$
\begin{array}{ll}
\text { (1) }-d_{3}>0, \ldots,-d_{n+1}>0 & \text { then } f \text { has a constrained local minimum at }\left(x_{1}^{*}, \ldots, x_{n}^{*}\right) \\
\text { (2) }-d_{3}<0,-d_{4}>0,-d_{5}<0, \ldots & \text { then } f \text { has a constrained local maximum at }\left(x_{1}^{*}, \ldots, x_{n}^{*}\right) \\
\text { (3) otherwise, } & f \text { has a constrained saddle point at }\left(x_{1}^{*}, \ldots, x_{n}^{*}\right)
\end{array}
$$

- If $d_{n+1}=0$, then the test gives no information

Example 1. Use the Lagrange multiplier method to find the local optima of

$$
\begin{aligned}
\text { minimize } / \text { maximize } & x_{1} x_{2}+2 x_{1}+2 x_{2} \\
\text { subject to } & x_{1}+3 x_{2}=10
\end{aligned}
$$

Step 0. Form the Lagrangian function L and find its gradient and Hessian.

Step 1. Find the constrained critical points.

Step 2. Classify each constrained critical point as a local minimum, local maximum, or saddle point by applying the second derivative test for constrained extrema.

Example 2. Use the Lagrange multiplier method to find the local optima of

$$
\begin{aligned}
\text { minimize/maximize } & x_{1}^{2}+x_{2}^{2}+x_{3}^{2} \\
\text { subject to } & 2 x_{1}+x_{2}+4 x_{3}=168
\end{aligned}
$$

