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Lesson 18. Optimization with Equality Constraints

1 _e eòect of a constraint

● Let’s model a consumer whose utility depends on his or her consumption of two products

● Deûne the following variables:

x1 = units of product 1 consumed x2 = units of product 2 consumed

● _e consumer’s utility function is
f (x1, x2) = x1x2 + 2x1 + 2x2

● Without any additional information, the consumer can maximize his or her utility by

● To make this model more realistic, we should take into account the consumer’s budget

● Suppose the unit prices of products 1 and 2 are $1 and $3 respectively

● In addition, suppose the consumer intends to spend $10 on the two products

● _e consumer’s budget constraint can be expressed as

● Putting this all together, we obtain the following optimization model:

maximize x1x2 + 2x1 + 2x2

subject to x1 + 3x2 = 10

● We have seen models like this before, with an objective function to bemaximized/minimized, and equality
constraints deûning relationships between the variables— e.g. proût maximization

● Sometimes we can solve thesemodels by ûrst substituting the equality constraint into the objective function,
and then ûnding theminimum/maximum of the resulting objective function

● _is isn’t always possible, especially when the equality constraint is complex

● Instead, we can use themethod of Lagrangemultipliers
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2 _e Lagrangemultiplier method – 1 equality constraint

minimize/maximize f (x1, . . . , xn)
subject to g(x1, . . . , xn) = c

● _e Lagrangian function L is

L(λ, x1, . . . , xn) = f (x1, . . . , xn) − λ[g(x1, . . . , xn) − c]

● _e gradient of L is

● _eHessian of L (also known as the borderedHessian) is:

Finding constrained local optima:

● Step 0. Form the Lagrangian function L and ûnd its gradient andHessian

● Step 1. Find the constrained critical points (λ, x1, . . . , xn) that solve the following system of equations:

∇L(λ, x1, . . . , xn) = 0 or equivalently

g(x1, . . . , xn) = c
∂ f
∂x1

(x1, . . . , xn) = λ
∂g
∂x1

(x1, . . . , xn)
⋮

∂ f
∂xn

(x1, . . . , xn) = λ
∂g
∂xn

(x1, . . . , xn)
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● Step 2. Classify each constrained critical point as a local minimum, local maximum, or saddle point by applying
the second derivative test for constrained extrema:

○ Suppose (λ∗, x∗1 , . . . , x∗n) is a constrained critical point found in Step 1
○ Compute the principal minors di = ∣HL(λ∗, x∗1 , . . . , x∗n)∣ for i = 3, . . . , n + 1
○ If dn+1 ≠ 0:

(1) −d3 > 0, . . . ,−dn+1 > 0 then f has a constrained local minimum at (x∗1 , . . . , x∗n)
(2) −d3 < 0,−d4 > 0,−d5 < 0, . . . then f has a constrained local maximum at (x∗1 , . . . , x∗n)
(3) otherwise, f has a constrained saddle point at (x∗1 , . . . , x∗n)

○ If dn+1 = 0, then the test gives no information

Example 1. Use the Lagrangemultiplier method to ûnd the local optima of

minimize/maximize x1x2 + 2x1 + 2x2

subject to x1 + 3x2 = 10

Step 0. Form the Lagrangian function L and ûnd its gradient andHessian.

Step 1. Find the constrained critical points.
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Step 2. Classify each constrained critical point as a local minimum, local maximum, or saddle point by applying the
second derivative test for constrained extrema.

Example 2. Use the Lagrangemultiplier method to ûnd the local optima of

minimize/maximize x2
1 + x2

2 + x2
3

subject to 2x1 + x2 + 4x3 = 168
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